Advertisement

ℹ️ Basic DataFrame Info

Before analyzing data, you need to understand what you're working with! Pandas provides simple methods to quickly explore your DataFrame and understand its structure, size, and content.

📊 Getting Basic Information

Let's start with a sample DataFrame and explore it:

import pandas as pd

# Create sample data
students = pd.DataFrame({
    'name': ['Alice', 'Bob', 'Charlie', 'Diana'],
    'age': [20, 22, 21, 23],
    'grade': ['A', 'B', 'A', 'C'],
    'score': [85, 78, 92, 69]
})

print("Our DataFrame:")
print(students)
print()

# Basic info
print(f"Shape: {students.shape}")
print(f"Size: {students.size}")
print(f"Columns: {list(students.columns)}")
Advertisement

👀 Viewing Your Data

The most important methods for looking at your data:

import pandas as pd

# Sample data
data = pd.DataFrame({
    'product': ['Laptop', 'Mouse', 'Keyboard', 'Monitor', 'Tablet'],
    'price': [999, 25, 75, 300, 450],
    'stock': [10, 50, 30, 8, 15]
})

print("First 3 rows:")
print(data.head(3))
print()

print("Last 2 rows:")
print(data.tail(2))
print()

print("Random 2 rows:")
print(data.sample(2))

📋 DataFrame Structure

Understanding what types of data you have:

import pandas as pd

# Mixed data types
employees = pd.DataFrame({
    'name': ['Alice', 'Bob', 'Charlie'],
    'salary': [50000, 60000, 55000],
    'active': [True, False, True]
})

print("DataFrame info:")
print(employees.info())
print()

print("Data types:")
print(employees.dtypes)
print()

print("Column names:")
print(employees.columns.tolist())

📈 Quick Statistics

Get instant statistics for numerical columns:

import pandas as pd

# Numerical data
sales = pd.DataFrame({
    'day': ['Mon', 'Tue', 'Wed', 'Thu', 'Fri'],
    'revenue': [1200, 1500, 900, 1800, 2000],
    'customers': [45, 52, 38, 61, 73]
})

print("Quick statistics:")
print(sales.describe())
print()

print("Just revenue stats:")
print(sales['revenue'].describe())

🔍 Checking for Missing Data

Always check if you have missing values:

import pandas as pd

# Data with missing values
scores = pd.DataFrame({
    'student': ['Alice', 'Bob', 'Charlie', 'Diana'],
    'math': [85, None, 92, 78],
    'english': [90, 87, None, 85]
})

print("DataFrame with missing data:")
print(scores)
print()

print("Missing values count:")
print(scores.isnull().sum())
print()

print("Any missing values?")
print(scores.isnull().any())
Advertisement

📊 Counting Unique Values

See what unique values you have in each column:

import pandas as pd

# Categorical data
survey = pd.DataFrame({
    'age_group': ['18-25', '26-35', '18-25', '36-45', '26-35'],
    'rating': ['Good', 'Excellent', 'Good', 'Poor', 'Good'],
    'city': ['NYC', 'LA', 'NYC', 'Chicago', 'LA']
})

print("Survey data:")
print(survey)
print()

print("Unique values per column:")
print(survey.nunique())
print()

print("Unique ratings:")
print(survey['rating'].unique())
print()

print("Rating counts:")
print(survey['rating'].value_counts())

🎯 Essential DataFrame Methods

MethodWhat It ShowsExample
.shape(rows, columns)(100, 5)
.sizeTotal number of cells500
.columnsColumn names['name', 'age', 'score']
.head(n)First n rowsFirst 5 rows by default
.tail(n)Last n rowsLast 5 rows by default
.info()Complete overviewData types, memory, missing values
.describe()StatisticsCount, mean, std, min, max, quartiles
.dtypesData type of each columnint64, object, float64

🔧 Quick Data Exploration Routine

Here's a simple routine to quickly understand any DataFrame:

import pandas as pd

# Sample dataset
data = pd.DataFrame({
    'name': ['Alice', 'Bob', 'Charlie', 'Diana', 'Eve'],
    'department': ['Sales', 'IT', 'Sales', 'HR', 'IT'],
    'salary': [50000, 75000, 52000, 48000, 80000],
    'years': [2, 5, 3, 1, 7]
})

print("=== Quick Data Exploration ===")
print(f"1. Shape: {data.shape}")
print(f"2. Columns: {list(data.columns)}")
print()

print("3. First few rows:")
print(data.head(3))
print()

print("4. Data types:")
print(data.dtypes)
print()

print("5. Missing values:")
print(data.isnull().sum())
print()

print("6. Quick stats:")
print(data.describe())

🎯 Key Takeaways

Advertisement

🚀 What's Next?

Now you know how to explore and understand your DataFrames! Next, let's learn how to load real data from files like CSV and Excel.

Continue to: Reading Files (CSV, Excel, JSON)

You're becoming a data detective! 🕵️‍♂️📊

Was this helpful?

😔Poor
🙁Fair
😊Good
😄Great
🤩Excellent