💾 Saving Your Work
After all your hard work analyzing and transforming data, you need to save and share your results! Pandas provides excellent tools for exporting data to various formats - from simple CSV files to Excel spreadsheets with multiple sheets, and even back to databases.
Think of saving data like packaging your findings for different audiences - some prefer Excel files, others need CSV data, and databases want structured imports.
import pandas as pd
# Sample analyzed data
sales_summary = pd.DataFrame({
'region': ['North', 'South', 'East', 'West'],
'total_sales': [150000, 120000, 180000, 140000],
'avg_order': [285, 340, 275, 320],
'customer_count': [526, 353, 655, 438]
})
print("Sales summary to save:")
print(sales_summary)
print()
# Save to CSV
sales_summary.to_csv('sales_summary.csv', index=False)
print("✅ Saved to CSV file: sales_summary.csv")
# Save to Excel
sales_summary.to_excel('sales_summary.xlsx', index=False)
print("✅ Saved to Excel file: sales_summary.xlsx")
# Check the saved file
saved_data = pd.read_csv('sales_summary.csv')
print("\nVerifying saved CSV:")
print(saved_data)
🎯 Why Save Data?
Sharing and preserving your analysis results is crucial:
📚 What You'll Learn in This Section
Master essential data export techniques:
- 📄 Exporting Data (CSV, Excel, JSON) Learn to save your DataFrames to common file formats for sharing and reporting.
- 🗄️ Database Export Discover how to save data back to databases for integration with other systems.
🛠️ Export Format Overview
Different formats serve different purposes:
📊 Quick Export Examples
Here's a preview of exporting to different formats:
import pandas as pd
# Create sample business data
quarterly_report = pd.DataFrame({
'quarter': ['Q1', 'Q2', 'Q3', 'Q4'],
'revenue': [125000, 145000, 135000, 165000],
'expenses': [95000, 110000, 105000, 120000],
'profit': [30000, 35000, 30000, 45000]
})
print("Quarterly report:")
print(quarterly_report)
print()
# Calculate profit margin
quarterly_report['profit_margin'] = (
quarterly_report['profit'] / quarterly_report['revenue'] * 100
).round(1)
print("With calculated profit margin:")
print(quarterly_report)
print()
# Save in multiple formats
quarterly_report.to_csv('quarterly_report.csv', index=False)
quarterly_report.to_excel('quarterly_report.xlsx', index=False, sheet_name='Summary')
quarterly_report.to_json('quarterly_report.json', orient='records', indent=2)
print("✅ Exported to:")
print(" - CSV: quarterly_report.csv")
print(" - Excel: quarterly_report.xlsx")
print(" - JSON: quarterly_report.json")
Excel with Multiple Sheets
import pandas as pd
# Create multiple related datasets
summary = pd.DataFrame({
'metric': ['Total Revenue', 'Total Customers', 'Avg Order Value'],
'value': [590000, 1972, 299.19]
})
by_region = pd.DataFrame({
'region': ['North', 'South', 'East', 'West'],
'revenue': [150000, 120000, 180000, 140000]
})
by_month = pd.DataFrame({
'month': ['Jan', 'Feb', 'Mar', 'Apr'],
'revenue': [145000, 155000, 140000, 150000]
})
print("Summary data:")
print(summary)
print("\nRegion data:")
print(by_region)
print("\nMonth data:")
print(by_month)
# Save multiple sheets to one Excel file
with pd.ExcelWriter('complete_report.xlsx') as writer:
summary.to_excel(writer, sheet_name='Summary', index=False)
by_region.to_excel(writer, sheet_name='By_Region', index=False)
by_month.to_excel(writer, sheet_name='By_Month', index=False)
print("\n✅ Saved multi-sheet Excel: complete_report.xlsx")
🔧 Export Best Practices
Essential practices for clean, professional exports:
📈 Real-World Export Scenarios
Common business export situations:
import pandas as pd
# Customer analysis results
customer_analysis = pd.DataFrame({
'customer_segment': ['Premium', 'Standard', 'Basic'],
'customer_count': [245, 892, 1156],
'avg_lifetime_value': [2850.75, 1245.30, 485.20],
'churn_rate_percent': [5.2, 12.8, 18.7]
})
# Product performance
product_performance = pd.DataFrame({
'product_category': ['Electronics', 'Books', 'Clothing', 'Home'],
'units_sold': [1250, 3400, 2100, 800],
'revenue': [245000, 85000, 126000, 95000],
'return_rate_percent': [3.2, 1.1, 8.5, 4.2]
})
print("Customer analysis:")
print(customer_analysis)
print("\nProduct performance:")
print(product_performance)
# Create executive summary
executive_summary = pd.DataFrame({
'key_metric': [
'Total Customers',
'Average Customer Value',
'Top Product Category',
'Overall Return Rate'
],
'value': [
f"{customer_analysis['customer_count'].sum():,}",
f"${customer_analysis['avg_lifetime_value'].mean():.2f}",
product_performance.loc[product_performance['revenue'].idxmax(), 'product_category'],
f"{(product_performance['return_rate_percent'].mean()):.1f}%"
]
})
print("\nExecutive summary:")
print(executive_summary)
# Export comprehensive report
with pd.ExcelWriter('business_analysis_report.xlsx') as writer:
executive_summary.to_excel(writer, sheet_name='Executive_Summary', index=False)
customer_analysis.to_excel(writer, sheet_name='Customer_Analysis', index=False)
product_performance.to_excel(writer, sheet_name='Product_Performance', index=False)
print("\n✅ Complete business report saved to: business_analysis_report.xlsx")
🎯 Export Workflow
Professional data export workflow:
🚀 What's Next?
Ready to start saving and sharing your data analysis results? Let's begin with the most common export formats - CSV, Excel, and JSON.
Start with: Exporting Data (CSV, Excel, JSON)
Time to save your work! 💾📊
Was this helpful?
Track Your Learning Progress
Sign in to bookmark tutorials and keep track of your learning journey.
Your progress is saved automatically as you read.